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ABSTRACT  
In this paper we introduce and study the concept g-binary m-open sets and g-binary m-continuity in g-binary 

topological spaces and investigate various properties. 
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I. INTRODUCTION  
 

In 2011 A. I. El-Maghrabi and M. A. Al-Johany [1] intreoduced the concept of  M-open set in topological spaces 

and studied the various properties of these sets. Nithyanantha Jothi and P.Thangavelu [16]  in 2011 introduced the 
concept of binary topology between two sets and investigate some of the basic properties. The purpose of this paper 

is to introduce and study g-binary m-open sets and g-binary m-continuity in g-binary topological spaces and 

investigate various relationships. Let X and Y are any two non-empty sets. A g-binary topology from X to Y is a 

binary structure Mg ⊆ ℘ X × ℘(Y) that satisfies the following axioms: 

 ∅, ∅  and  X, X ∈ Mg  

If { Aα , Bα  ;  α ∈ ∆} is a family of members of Mg , then   Aαα∈∆  ,  Bαα∈∆  ∈ Mg  

 

If Mg  is a g-binary topology from X to Y, then the triplet (X, Y, Mg) is called a g-binary topological space and the 

members of Mg  are called the g-binary open subsets of the g-binary topological space (X, Y, Mg). The elements of 

X × Y are called the g-binary points (or g-binary sets) of g-binary topological space (X, Y, Mg). Let (X, Y, Mg) be a g-

binary topological space and A ⊆ X, B ⊆ Y. Then  A, B  is g-binary closed in (X, Y, Mg) if (X\A, Y\B) ∈ Mg .  

 

Section 2 deals with the basic concepts of g-binary topological spaces. In section 3 g-binary m-open sets and g-

binary m-continuity in g-binary topological spaces are studied and established the relationships. Throughout the 

paper ℘ x  denotes the power set of x.  

 

II. PRELIMINARIES 
 

Definition 2.1: Let (X, Y, Mg) be a g-binary topological space and  A, B ⊆  X, Y . Let (A, B)1∗

g
=  {Aα:  Aα , Bα   

is g-binary closed and (A, B) ⊆  Aα , Bα } and Let (A, B)2∗

g
=  {Bα:  Aα , Bα   is g-binary closed and (A, B) ⊆

 Aα , Bα }. Then (A, B)1∗

g
 , (A, B)2∗

g
)is g-binary closed and (A, B) ⊆ (A, B)1∗

g
 , (A, B)2∗

g
). The ordered pair 

 (A, B)1∗

g
 , (A, B)2∗

g
)  is called g-binary closure of (A, B) and is denoted gbcl(A, B) in the g-binary topology 

(X, Y, Mg) where  A, B ⊆  X, Y .  
 

Proposition 2.1: In a g-binary topological space (X, Y, Mg) if  A, B ⊆  X, Y , then gbcl A, B  is smallest g-binary 

closed set containing (A, B). 
 

Proposition 2.2: Let  A, B ⊆  X, Y . Then  A, B  is g-binary closed in (X, Y, Mg) iff  A, B = gbcl A, B . 
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Definition 2.2: Let (X, Y, Mg) be a g-binary topological space and  A, B ⊆  X, Y . Let (A, B)10

g
=∪ {Aα:  Aα , Bα  

is g-binary open and  Aα , Bα ⊆ (A, B)} and Let (A, B)20

g
=∪ {Bα:  Aα , Bα  is g-binary open and  Aα , Bα ⊆

(A, B)}.Then ( A, B 10

g  , (A, B)20

g
)is g-binary open and ( A, B 10

g  , (A, B)20

g
) ⊆ (A, B) . The ordered pair 

( A, B 10

g  , (A, B)20

g
) is called g-binary interior of (A, B) and is denoted by gbint(A, b). 

 

Proposition 2.3: In a g-binary topological space (X, Y, Mg) if  A, B ⊆  X, Y , then gbint A, B  is largest g-binary 

open set contained in (A, B). 

 

Proposition 2.4: Let  A, B ⊆  X, Y . Then  A, B  is g-binary open in (X, Y, Mg) iff  A, B = gbint A, B . 
 

Definition 2.3: A subset (A, B) of a g-binary topological space (X, Y, Mg)  is called  

g-binary semi-open if (A, B) ⊆ gbcl(gbint A, B ). 

g-binary pre-open if (A, B) ⊆ gbint(gbcl A, B ). 

g-binary α-open if  A, B ⊆ gbint  gbcl gbint A, B    

g-binary β-open if (A, B) ⊆ gbcl(gbint gbcl(A, B) ) 

 

Definition 3.4: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is said to be  

g-binary continuous if f−1(A, B) is g-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

g-binary semi-continuous if f−1(A, B) is g-semi-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

g-binary pre-continuous if f−1(A, B) is g-pre-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

g-binary α-continuous if f−1(A, B) is g-α-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

g-binary β-continuous if f−1(A, B) is g-β-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

 

III. G-BINARY M-OPEN SETS AND MAPS 
 

In this section we will introduce m-open sets and m-continuity in g-binary topological spaces. Let (X, Y, Mg) be a g-

binary topological space. The g-binary point is said to be in the δ-closure (resp. θ-closure) of a subset  A, B ⊆
 X, Y  if for each g-binary open neighborhood  U, V  of that g-binary point we have  gbint gbcl U, V   (A, B) ≠ ∅  

and  (resp. gbcl U, V  (A, B) ≠ ∅). The δ-closure (resp. θ-closure) of a subset  A, B ⊆  X, Y  is denoted by 

gbclδ(A, B) resp. gbclθ(A, B). A subset  A, B ⊆  X, Y  is called δ-closed (resp. θ-closed) if  A, B = gbclδ(A, B)  

(resp.  A, B = gbclθ(A, B). The complement of δ-closed (resp. θ-closed) set is called δ-open (resp. θ-open). The 

families of all δ-open (resp. θ-open) subsets (X, Y, Mg) forms g-binary topology denoted by δMg  (resp.θMg). From 

the definitions it follows easily that θMg ⊆ δMg ⊆ Mg.  

 

Definition 3.1: Let (X, Y, Mg) be an g-binary topological space and  A, B  be a subset of ℘ X × ℘(Y), then 

gbclδ A, B = { x, y ∈ ℘ X × ℘ Y : gbint gbcl U, V    A, B ≠ ∅,  U, V ∈ Mg  and  x, y ∈  U, V }    

gbclθ(A, B) = { x, y ∈ ℘ X × ℘ Y : gbcl U, V   A, B ≠ ∅,  U, V ∈ Mg  and  x, y ∈  U, V }    

 

Definition 3.2: A subset (A, B) of a g-binary topological space (X, Y, Mg)  is called  

g-binary δ-pre-open set if (A, B) ⊆ gbint(gbclδ(A, B)) 

g-binary θ-semi-open set (A, B) ⊆ gbcl(gbintθ(A, B)) 

 

Definition 3.3: Let (X, Y, Mg) be an g-binary topological space and  A, B  be a subset of ℘ X × ℘(Y), then  A, B  

is called 

g-binary m-open set if  A, B ⊆ gbcl gbintθ A, B     gbint(gbclδ(A, B)) 

g-binary m-open set if  A, B ⊇ gbint gbclθ A, B     gbcl(gbintδ(A, B)) 
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Proposition 3.1:  In a g-binary topological space (X, Y, Mg)   

Every g-binary θ-semi-open set is g-binary m-open. 

Every g-binary δ-pre-open set is g-binary m-open. 

 

Proof: Obvious  

Remark 3.1: Converse of Proposition 3.1 is not true in general as shown in Example 3.1 

 

Example 3.1: Let  X =  1,2,3  and  Y =  a, b, c . Then  Mg  = { ∅, ∅ ,   1 ,  a, b  ,   2,3 ,  c  ,   1,3 ,  Y  , 
 X, Y }. Clearly Mg  is g-binary topology from X to Y. Therefore the set   1,3 ,  a, b   is g-binary m-open but not g-

binary θ-semi-open or g-binary δ-pre-open.  

 

Definition 3.4: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is said to be g-binary m-continuous if f−1(A, B) is g-m-open in (Z, τ) for every g-binary open set (A, B) 

in (X, Y, Mg).  

 

Example 3.2: Let Z =  1, 2, 3,4 , X =  a1 , a2 , a3  and  Y =  b1 , b2 , b3 .Then τ = {∅,  1 ,  3,4 ,  1,2,4 ,  1,3,4  Z}    
and   Mg = { ∅, ∅ ,   a1 ,  b1  ,   a2 ,  b2  ,   a2 ,  Y  ,  X, Y }. Clearly τ is a g-topology on Z and Mg  is g-binary 

topology from X to Y. Define f: Z → X × Y by f 1 =  a1 , b1 =  f 3  and  f 2 = f(4) =  a2, ∅ .  Now f−1 ∅,
  ∅=∅, f−1(a1, b1)={1,3},  f−1(a2, b2)={∅}, f−1(a2, Y)={∅}  and f−1X, Y=Z. This shows that the inverse image 

of every g-binary open set in (X, Y, Mg) is g-m-open in  Z, τ . Hence f is g-binary m-continuous function.  

 

Definition 3.4: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is said to be g-binary θ-semi-continuous if f−1(A, B) is g-θ-semi-open in (Z, τ) for every g-binary open 

set (A, B) in (X, Y, Mg).  

 

Example 3.3: Let Z =  1, 2, 3,4 , X =  a1 , a2 , a3  and  Y =  b1 , b2 , b3 .Then τ = {∅,  1 ,  3,4 ,  1,2,4 ,  1,3,4  Z}    
and   Mg = { ∅, ∅ ,   a1 ,  b1  ,   a2 ,  b2  ,   a2 ,  Y  ,  X, Y }. Clearly τ is a g-topology on Z and Mg  is g-binary 

topology from X to Y. Define f: Z → X × Y by f 1 =  a2 , ∅ =  f 3  and  f 2 = f(4) =  a1 , b1 .  Now f−1 ∅,
  ∅=∅, f−1(a1, b1)={2,4},  f−1(a2, b2)={∅}, f−1(a2, Y)={∅}  and f−1X, Y=Z. This shows that the inverse image 

of every g-binary open set in (X, Y, Mg) is g-θ-semi-open in  Z, τ . Hence f is g-binary θ-semi-continuous.  

 

Proposition 3.2: Every g-binary θ-semi-continuous function in g-binary topological space is g-binary m-continuous. 

Proof: Obvious from the definition 

 

Remark 3.2: Converse of Proposition 3.2 is not true in general as shown in Example 3.4 

 

Example 3.4: In Example 3.2 f is g-binary m-continuous function but not g-binary θ-semi-continuous because the 

set  1,3  is g-m-open in  Z, τ  but not g-θ-semi-open.  

 

Definition 3.5: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is said to be g-binary δ-pre-continuous if f−1(A, B) is g-δ-pre-open in (Z, τ) for every g-binary open set 

(A, B) in (X, Y, Mg).   

 

Example 3.5: Let Z =  1, 2, 3,4 , X =  a1 , a2 , a3  and  Y =  b1 , b2 , b3 .Then τ = {∅,  1 ,  3,4 ,  1,2,4 ,  1,3,4  Z}    
and   Mg = { ∅, ∅ ,   a1 ,  b1  ,   a2 ,  b2  ,   a2 ,  Y  ,  X, Y }. Clearly τ is a g-topology on Z and Mg  is g-binary 

topology from X to Y. Define f: Z → X × Y by f 1 =  a2 , ∅ =  f 2  and  f 3 = f(4) =  a1 , b1 .  Now f−1 ∅,
∅ = ∅, f−1( a1 ,  b1 ) = {3,4},  f−1( a2 ,  b2 ) = {∅}, f−1( a2 ,  Y ) = {∅}  and f−1 X, Y = Z. This shows that 
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the inverse image of every g-binary open set in (X, Y, Mg) is g-𝛿-pre-open in (Z, τ). Hence f is g-binary δ-pre-

continuous.  

 

Proposition 3.3: Every g-binary δ-pre-continuous function in g-binary topological space is g-binary m-continuous. 

 

Proof: Obvious from the definition 

Remark 3.3: Converse of Proposition 3.3 is not true in general as shown in Example 3.6 

 

Example 3.6: In Example 3.2 f is g-binary m-continuous function but not g-binary δ-pre-continuous because the set 
 1,3  is g-m-open in  Z, τ  but not g-δ-pre-open.  

 

Remark 3.4: Every g-binary continuous function in g-binary topological space is g-binary m-continuous but not 

converse as shown in Example 3.7. 

 

Example 3.7: In Example 3.2 f is g-binary m-continuous function but not g-binary continuous because the set  1,3  
is g-m-open in  Z, τ  but not g-open. 

 
Remark 3.5: Every g-binary pre-continuous function in g-binary topological space is g-binary m-continuous but not 

converse as shown in Example 3.8. 

 

Example 3.8: Let  Z =  1, 2, 3,4 , X =  a1 , a2 , a3  and  Y =  b1 , b2 , b3 .Then τ = {∅,  4 ,  1,2 ,  2,3 ,  1,2,3 , 
 2,3,4 ,  1,2,4 , Z}    and   Mg = { ∅, ∅ ,   a1 ,  b1  ,   a2 ,  b2  ,   a2 ,  Y  ,  X, Y }. Clearly τ is a g-topology on Z 

and Mg  is g-binary topology from X to Y. Define f: Z → X × Y by f 1 =  a1 , b1 =  f 4  and  f 2 = f(3) =
 a2 , ∅ .  Now f−1 ∅, ∅ = ∅, f−1( a1 ,  b1 ) = {1,4},  f−1( a2 ,  b2 ) = {∅}, f−1( a2 ,  Y ) = {∅}  and 

f−1 X, Y = Z. This shows that the inverse image of every g-binary open set in (X, Y, Mg) is g-m-open in (Z, τ). 

Hence f is g-binary m-continuous but not g-binary pre-continuous because the set {1,4} is g-m-open but not g-pre-

open in (Z, τ) 

 

Remark 3.6: Every g-binary semi-continuous function in g-binary topological space is g-binary m-continuous but 

not converse as shown in Example 3.9. 

 

Example 3.9: In Example 3.8 f is g-binary m-continuous but not g-binary semi-continuous because the set {1,4} is 

g-m-open but not g-semi-open in (Z, τ). 

 

Remark 3.7: Every g-binary β-continuous function in g-binary topological space is g-binary m-continuous but not 
converse as shown in Example 3.10. 

 

Example 3.10: In Example 3.8 f is g-binary m-continuous but not g-binary β-continuous because the set {1,4} is g-

m-open but not g-β-open in (Z, τ). 

 

Remark 3.8: Every g-binary α-continuous function in g-binary topological space is g-binary m-continuous but not 

converse as shown in Example 3.11. 

 

Example 3.11: In Example 3.8 f is g-binary m-continuous but not g-binary α-continuous because the set {1,4} is g-

m-open but not g-α-open in (Z, τ). 
From the above discussion we have the following result: 

g-binary θ-semi-continuous ⟹ (⇍) g-binary m-continuous 

g-binary δ-pre-continuous ⟹ (⇍) g-binary m-continuous 

g-binary continuous ⟹ (⇍) g-binary m-continuous 

g-binary semi-continuous ⟹ (⇍) g-binary m-continuous 

g-binary pre-continuous ⟹ (⇍) g-binary m-continuous 
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g-binary α-continuous ⟹ (⇍) g-binary m-continuous 

g-binary β-continuous ⟹ (⇍) g-binary m-continuous 
 

IV. CONCLUSION 
 

g-binary m-open sets and g-binary m-continuity in g-binary topological spaces is introduced and studied. Further 

different relationships between these functions are investigated 
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